Tin(II) Chloride Dihydrate—a Mild Reagent for the Transformation of 6-Nitro- Δ^5 -steroids to 5α -Hydroxy-6-ketosteroids

Gireesh M. Singhal, Nalin B. Das, and Ram P. Sharma*

Natural Products Chemistry Division, Regional Research Laboratory, Jorhat – 6, Assam, India

Reaction of excess hydrated tin(II) chloride with 6-nitro- Δ^5 -steroids (1a-g) and (5) in tetrahydrofuran furnishes 5α -hydroxy-6-ketosteroids (2a-g) and (6) respectively, in good yields.

In connection with some other problem we were interested in the preparation of 5α -chloro-6-hydroxyiminosteroids. Since the reaction of $SnCl_2\cdot 2H_2O$ with epoxides has been reported¹ to give chlorohydrins and the same reagent effects the reduction of aromatic nitro compounds to amines,² it was expected that the reaction of 6-nitro- Δ^5 -steroids with $SnCl_2\cdot 2H_2O$ would give the corresponding 5α -chloro-6-hydroxyiminosteroids. However, the reaction of excess hydrated tin(II) chloride with 6-nitro- Δ^5 -steroids (1a-g) furnished the corresponding 5α -hydroxy-6-ketosteroids (2a-g) in 60-80% yields (see Table 1).† In each case 8-12% of the corresponding 5α -hydroxy-6-hydroxyiminosteroids (3a-g) were also isolated.‡ Reaction of 3β -acetoxy- 5α -hydroxy-6-

In all the reactions given in Table 1, addition of extra water to the reaction medium did not increase either the rate or the yield of the reaction, indicating that only the water of crystallisation present in SnCl₂·2H₂O participates in the reaction.

Kabalka *et al.*⁴ have reported that the reaction of nitrostyrene (**7a**) and β -methyl- β -nitrostyrene (**7b**) with 1.50 equiv. of SnCl₂·2H₂O in alcoholic media furnishes the corresponding

hydroxyiminocholestane (3b) with excess $SnCl_2 \cdot 2H_2O$ in tetrahydrofuran (THF) gave the ketonitrile (4) in 90% yield; no 3β -acetoxy- 5α -hydroxycholestan-6-one (2b) could be detected in this reaction, thus eliminating the possibility of the oximes being formed as intermediates.§ In order to assess the scope of this reaction compound (5), prepared from a natural product,³ was treated with $SnCl_2 \cdot 2H_2O$ (10 mol equiv.) giving compound (6) in 40% yield, together with unreacted starting material.

 $[\]dagger$ Several solvents were used but the best yields were obtained in THF. Reaction of (1b) with a stoicheiometric amount of SnCl₂·2H₂O was very slow and only 15% of (2b) was formed after 8 h.

 $[\]ddagger$ The stereochemistry of the oximes was established as E by NMR analysis.

 $[\]$ This is the first report of the conversion of hydroxyoximes to ketonitriles with SnCl₂·2H₂O.

Table 1. Reduction of 6-nitro-Δ5-steroids with SnCl₂·2H₂O.a

Substrate	Reaction time/h	Product ^b (% yield)
(1a)	4	(2a) (65), (3a) (10)
(1b)	3	(2b) (80) , $(3b)$ (8)
(1c)	8	(2c) (60), (3c) (12)
(1d)	4	(2d) (75), (3d) (8)
(1e)	2	(2e) (70), (3e) (8)
(lf)	3	(2f) (75), (3f) (10)
(1g)	6	(2g) (70), (3g) (8)

 $^{\rm a}$ In a typical experiment a solution of compound (1b) (1 mmol) in 4 ml of THF was treated with $\rm SnCl_2\cdot 2H_2O$ (10 mmol) with stirring at room temperature and the reaction was monitored by TLC. Aqueous work-up of the reaction mixture followed by purification by $\rm SiO_2$ TLC furnished compounds (2b) and (3b) in the yields given. $^{\rm b}$ All compounds were characterized by spectral analysis and by direct comparison with their authentic samples.

 α -alkoxy oximes (8b) in high yield.⁵ However, when we studied the reaction of nitrostyrene (7a) with excess $SnCl_2 \cdot 2H_2O$ in THF, α -hydroxy oxime (8a) was obtained quantitatively.¶

 $e; R^1 = OAc; R^2 = O$

 \mathbf{f} ; $R^1 = OAc$; $R^2 = OAc$

 $g; R^1 = Cl; R^2 = C_8H_{17}$

a; $R^1 = H$, $R^2 = C_8 H_{17}$

b; $R^1 = OAc$, $R^2 = C_8H_{17}$

c; $R^1 = OH$, $R^2 = C_8H_{17}$

d; $R^1 = OMe$, $R^2 = C_8H_{17}$

Reaction of 3β -acetoxy-6-nitrocholest-5-ene (1b) with excess $SnCl_2 \cdot 2H_2O$ in MeOH as the solvent also furnished compound (2b) in 70% yield.

Compound (1b) showed no reaction with $SnCl_4 \cdot 5H_2O$ after 4 h and the unchanged starting material was recovered quantitatively.

This simple and mild procedure for converting vinyl nitrosteroids \parallel to α -hydroxyketosteroids is a useful addition to the existing methods.

We thank Dr. J. N. Baruah (Director, Regional Research Laboratory) for providing the necessary facilities.

Received, 29th November 1989; Com. 9/05116C

References

- 1 C. Einhorn and J. L. Luche, J. Chem. Soc., Chem. Commun., 1986,
- 2 F. D. Bellamy and K. Ou, Tetrahedron Lett., 1984, 25, 839.
- 3 J. C. Sarma, N. C. Barua, R. P. Sharma, and J. N. Baruah, Tetrahedron, 1983, 39, 2843.
- 4 R. S. Varma and G. W. Kabalka, Chem. Lett., 1985, 243.
- 5 Recently Shafiullah *et al.* have reported similar results for vinyl nitrosteroids using BF₃ instead of tin(II) chloride, see *e.g.*, Shafiullah, Shamsuzzaman, and R. K. Singh, *Indian J. Chem.*, 1989, **28B**, 191. When we attempted the reaction of compound (**1b**) with excess SnCl₂·2H₂O in the presence of ethanethiol or ethane-1,2-dithiol, compound (**2b**) was formed as the major product but the reaction was very slow and a few other products were also formed.

[¶] The NMR spectrum of compound (8a) indicated it to be a mixture of E and Z isomers (70:30).

 $^{\|}$ 6-Nitro- Δ^5 -steroids can be prepared from the corresponding alkenes under mild reaction conditions using chlorotrimethylsilane and sodium nitrite followed by mild base treatment. These results will be published separately.